GeoModels Logo

GeoModels

Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis

Welcome to GeoModels

The GeoModels package provides a comprehensive set of procedures for simulation, estimation, and prediction of spatio-temporal random fields with support for both Gaussian and non-Gaussian distributions.

Key features of the package:

Tutorials and Examples

Spatial Data

Distribution Description Documentation Code
Gaussian Analysis of spatial data using a flexible compactly supported covariance model PDF R Code
Gaussian Analysis of global spatial data on the planet Earth using Gaussian random fields PDF R Code
Skew-Gaussian Analysis of asymmetric spatial data using skew-Gaussian random fields PDF R Code
t Analysis of heavy tails spatial data using t random fields PDF R Code
Tukey-h Analysis of heavy tails spatial data using tukey-h random fields PDF R Code
Weibull Analysis of positive spatial data using Weibull random fields PDF R Code
Log-Gaussian Analysis of positive spatial data using Log-Gaussian random fields PDF R Code
Poisson Analysis of spatial count data using Poisson random fields PDF R Code
Binomial Analysis of spatial discrete data using Binomial random fields PDF R Code

SpatioTemporal Data

Distribution Description Documentation Code
Gaussian Analysis of spatio-temporal data using Gaussian random fields PDF R Code
Gaussian Analysis of spatio-temporal data with spatial locations changing over time PDF R Code

Spatial bivariate Data

Distribution Description Documentation Code
Gaussian Analysis of bivariate spatial data using bivariate Gaussian random fields PDF R Code

Real data analysis

Distribution Description Documentation Code
Skew-Gaussian Analysis of spatial precipitation anomalies using Gaussian and skew Gaussian random fields PDF R Code
t Analysis of maximum temperature of Australia using t random fields PDF R Code

Resources and Download

GeoModels is actively developed on GitHub. The latest binaries and source code are available from our repository:

Installation Instructions

CRAN Installation

The stable version of GeoModels is available on CRAN. Install it directly in R with:

install.packages("GeoModels")

Publications

GeoModels has been used in the following peer-reviewed publications:

Modelling Point Referenced Spatial Count Data: A Poisson Process Approach
Morales-Navarrete D., Bevilacqua M., Caamaño C., Castro L.M.
Journal of the American Statistical Association, 2022
DOI: 10.1080/01621459.2022.2140053
Nearest neighbours weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation
Caamaño-Carrillo C, Bevilacqua M, López C, Morales-Oñate V
Research Square, 2022
DOI: 10.21203/rs.3.rs-2073895/v1
A selective view of climatological data and likelihood estimation
Blasi F., Caamaño C., Bevilacqua M., Furrer R.
Spatial Statistics, 2022
DOI: 10.1016/j.spasta.2022.100596
Unifying Compactly Supported and Matern Covariance Functions in Spatial Statistics
Bevilacqua M., Caamaño C., Porcu E.
Journal of Multivariate Analysis, 2022
DOI: 10.1016/j.jmva.2022.104949
A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers
Bevilacqua M., Caamaño C., Arellano-Valle R. B., Camilo Gomez C.
Test, 2022
DOI: 10.1007/s11749-021-00797-5
On modelling positive continuous data with spatio-temporal dependence
Bevilacqua, M., C. Caamano, and C. Gaetan
Environmetrics, 2020
DOI: 10.1002/env.2628
On Spatial (Skew) t Processes and Applications
Bevilacqua, M., C. Caamano, R. B. A. Valle, and V. Morales-Oñate
Scandinavian Journal of Statistics, 2019
DOI: 10.1111/sjos.12328
Estimation and prediction using generalized Wendland covariance function under fixed domain asymptotics
Bevilacqua, M., T. Faouzi, R. Furrer, and E. Porcu
The Annals of Statistics, 2019
DOI: 10.1214/18-AOS1709
Estimating covariance functions of multivariate skew-gaussian random fields on the sphere
Alegria, A., S. Caro, M. Bevilacqua, E. Porcu, and J. Clarke
Spatial Statistics, 2017
DOI: 10.1016/j.spasta.2017.05.003
Likelihood-based inference for multivariate space-time wrapped-Gaussian fields
Alegria A., Bevilacqua, M., Porcu, E.
Journal of Statistical Computation and Simulation, 2016
DOI: 10.1080/00949655.2015.1122708
Composite likelihood inference for multivariate Gaussian random fields
Bevilacqua M., Alegria A., Velandia D., Porcu E.
Journal of Agricultural Biological and Environmental Statistics, 2016
DOI: 10.1007/s13253-016-0254-5
Assessing the significance of the correlation between the components of a bivariate Gaussian random field
Bevilacqua, M., Vallejos, R. and Velandia D.
Environmetrics, 2015
DOI: 10.1002/env.2348
Comparing composite likelihood methods based on pairs for spatial Gaussian random fields
Bevilacqua, M. and C. Gaetan
Statistics and Computing, 2015
DOI: 10.1007/s11222-014-9471-3
Estimating space and space-time covariance functions for large data sets: a weighted composite likelihood approach
Bevilacqua, M., C. Gaetan, J. Mateu, and E. Porcu
Journal of the American Statistical Association, 2012
DOI: 10.1080/01621459.2011.646928
On spatial skew-Gaussian processes and applications
Zhang, H. and A. El-Shaarawi
Environmetrics, 2010
DOI: 10.1002/env.993

Package Citation

To cite GeoModels in publications, use:

Bevilacqua M, Morales-Oñate V, Caamaño-Carrillo C, F Cuevas-Pacheco (2024).
GeoModels: Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis.
R package version 2.1.8, https://CRAN.R-project.org/package=GeoModels.

BibTeX entry for LaTeX users:

@Manual{GM2024,
title = {GeoModels: Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis},
author = {Moreno Bevilacqua and Víctor Morales-Oñate and Christian Caamaño-Carrillo},
year = {2024},
note = {R package version 2.0.1},
url = {https://CRAN.R-project.org/package=GeoModels},
}

About the Authors

Moreno Bevilacqua

Moreno Bevilacqua

Chile

Associate Professor at the Faculty of Engineering and Science of Adolfo Ibañez University in Viña del Mar (Chile). His main research interests concern theory, methodology and applications in multivariate spatio-temporal statistics.

Personal site
Víctor Morales-Oñate

Víctor Morales-Oñate

Pelileo-Ecuador

Received his PhD in Statistics from Universidad de Valparaíso-Chile in 2018. His main research interests concern computational spatial (temporal) geostatistics applications. Other interests include data analytics in business, machine learning, quantitative economy and philosophy.

Personal site
Christian Caamaño-Carrillo

Christian Caamaño-Carrillo

Concepción-Chile

Assistant Professor at the Statistics Department of Universidad del Bío-Bío since 2013. He received his PhD in Statistics from Universidad de Valparaíso in 2018. His main research interests concern theory, methodology and applications in space-time statistics for non-Gaussian data.

Research profile
Francisco Cuevas-Pacheco

Francisco Cuevas-Pacheco

Valparaíso-Chile

A young Chilean researcher (1987) living in Valparaíso. His research topics include spatio and spatio-temporal point process and random fields, simulation methods, and computational statistics. He loves music, playing guitar, learning languages and sports.

Personal site