Welcome to GeoModels
The GeoModels package provides a comprehensive set of procedures for simulation, estimation, and prediction of spatio-temporal random fields with support for both Gaussian and non-Gaussian distributions.
Key features of the package:
- Data types supported:
- Spatial data
- Space-time data with spatial locations possibly changing over time
- Bivariate spatial data with (possibly different) spatial location sites
- Domain flexibility: Data can be defined on Euclidean space or on a sphere of arbitrary radius
- Rich selection of marginal distributions:
- Continuous distributions (real line):
- Gaussian
- Skew-Gaussian
- Student T
- Logistic
- Sinh-arcsinh
- Two-piece
- Positive continuous distributions:
- Gamma
- Weibull
- LogGaussian
- LogLogistic
- Discrete distributions:
- Binomial
- Negative binomial
- Poisson
- Circular distributions:
- Wrapped-Gaussian
- Continuous distributions (real line):
- Modeling capabilities:
- Parametric models for both regression and dependence analysis through covariance models
- Parametric (bivariate) spatial and spatiotemporal covariance models, including:
- Matern
- Generalized Wendland
- Gneiting model
- Bivariate Matern
- Estimation methods:
- Composite likelihood based on pairs
- Full likelihood (when feasible)
- Prediction: Optimal (local) linear prediction (kriging)
Tutorials and Examples
Spatial Data
Distribution | Description | Documentation | Code |
---|---|---|---|
Gaussian | Analysis of spatial data using a flexible compactly supported covariance model | R Code | |
Gaussian | Analysis of global spatial data on the planet Earth using Gaussian random fields | R Code | |
Skew-Gaussian | Analysis of asymmetric spatial data using skew-Gaussian random fields | R Code | |
t | Analysis of heavy tails spatial data using t random fields | R Code | |
Tukey-h | Analysis of heavy tails spatial data using tukey-h random fields | R Code | |
Weibull | Analysis of positive spatial data using Weibull random fields | R Code | |
Log-Gaussian | Analysis of positive spatial data using Log-Gaussian random fields | R Code | |
Poisson | Analysis of spatial count data using Poisson random fields | R Code | |
Binomial | Analysis of spatial discrete data using Binomial random fields | R Code |
SpatioTemporal Data
Distribution | Description | Documentation | Code |
---|---|---|---|
Gaussian | Analysis of spatio-temporal data using Gaussian random fields | R Code | |
Gaussian | Analysis of spatio-temporal data with spatial locations changing over time | R Code |
Spatial bivariate Data
Distribution | Description | Documentation | Code |
---|---|---|---|
Gaussian | Analysis of bivariate spatial data using bivariate Gaussian random fields | R Code |
Real data analysis
Distribution | Description | Documentation | Code |
---|---|---|---|
Skew-Gaussian | Analysis of spatial precipitation anomalies using Gaussian and skew Gaussian random fields | R Code | |
t | Analysis of maximum temperature of Australia using t random fields | R Code |
Resources and Download
GeoModels is actively developed on GitHub. The latest binaries and source code are available from our repository:
- GeoModels Package sources for any platform
- Reference Manual
- Bug reports and issues
Installation Instructions
CRAN Installation
The stable version of GeoModels is available on CRAN. Install it directly in R with:
install.packages("GeoModels")
Publications
GeoModels has been used in the following peer-reviewed publications:
Modelling Point Referenced Spatial Count Data: A Poisson Process Approach
Journal of the American Statistical Association, 2022
DOI: 10.1080/01621459.2022.2140053
Nearest neighbours weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation
Research Square, 2022
DOI: 10.21203/rs.3.rs-2073895/v1
A selective view of climatological data and likelihood estimation
Spatial Statistics, 2022
DOI: 10.1016/j.spasta.2022.100596
Unifying Compactly Supported and Matern Covariance Functions in Spatial Statistics
Journal of Multivariate Analysis, 2022
DOI: 10.1016/j.jmva.2022.104949
A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers
Test, 2022
DOI: 10.1007/s11749-021-00797-5
On modelling positive continuous data with spatio-temporal dependence
Environmetrics, 2020
DOI: 10.1002/env.2628
On Spatial (Skew) t Processes and Applications
Scandinavian Journal of Statistics, 2019
DOI: 10.1111/sjos.12328
Estimation and prediction using generalized Wendland covariance function under fixed domain asymptotics
The Annals of Statistics, 2019
DOI: 10.1214/18-AOS1709
Estimating covariance functions of multivariate skew-gaussian random fields on the sphere
Spatial Statistics, 2017
DOI: 10.1016/j.spasta.2017.05.003
Likelihood-based inference for multivariate space-time wrapped-Gaussian fields
Journal of Statistical Computation and Simulation, 2016
DOI: 10.1080/00949655.2015.1122708
Composite likelihood inference for multivariate Gaussian random fields
Journal of Agricultural Biological and Environmental Statistics, 2016
DOI: 10.1007/s13253-016-0254-5
Assessing the significance of the correlation between the components of a bivariate Gaussian random field
Environmetrics, 2015
DOI: 10.1002/env.2348
Comparing composite likelihood methods based on pairs for spatial Gaussian random fields
Statistics and Computing, 2015
DOI: 10.1007/s11222-014-9471-3
Estimating space and space-time covariance functions for large data sets: a weighted composite likelihood approach
Journal of the American Statistical Association, 2012
DOI: 10.1080/01621459.2011.646928
On spatial skew-Gaussian processes and applications
Environmetrics, 2010
DOI: 10.1002/env.993
Package Citation
To cite GeoModels in publications, use:
Bevilacqua M, Morales-Oñate V, Caamaño-Carrillo C, F Cuevas-Pacheco (2024).
GeoModels: Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis.
R package version 2.1.8, https://CRAN.R-project.org/package=GeoModels.
BibTeX entry for LaTeX users:
@Manual{GM2024,
title = {GeoModels: Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis},
author = {Moreno Bevilacqua and Víctor Morales-Oñate and Christian Caamaño-Carrillo},
year = {2024},
note = {R package version 2.0.1},
url = {https://CRAN.R-project.org/package=GeoModels},
}